The Partitionability Conjecture

نویسندگان

  • JEREMY L. MARTIN
  • In
  • Richard Stanley
چکیده

In 1979, Richard Stanley made the following conjecture: Every Cohen–Macaulay simplicial complex is partitionable. Motivated by questions in the theory of face numbers of simplicial complexes, the Partitionability Conjecture sought to connect a purely combinatorial condition (partitionability) with an algebraic condition (Cohen–Macaulayness). The algebraic combinatorics community widely believed the conjecture to be true, especially in light of related stronger conjectures and weaker partial results. Nevertheless, in a 2016 paper [DGKM16], the three of us (Art, Carly, and Jeremy), together with Jeremy’s graduate student Bennet Goeckner, constructed an explicit counterexample. Here we tell the story of the significance and motivation behind the Partitionability Conjecture and its resolution. The key mathematical ingredients include relative simplicial complexes, nonshellable balls, and a surprise appearance by the pigeonhole principle. More broadly, the narrative of the Partitionability Conjecture highlights a general theme of modern algebraic combinatorics: to understand discrete structures through algebraic, geometric, and topological lenses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hereditary properties and obstructions of simplicial complexes

In this paper, we discuss the relation between shellability, sequentially CohenMacaulayness, and partitionability. Especially, our main concern is to see the difference of these properties when we require heredity. For a property P, we say a simplicial complex satisfies hereditary-P if the simplicial complex itself and all the restrictions to subsets of its vertex set satisfy the property P, an...

متن کامل

Equistarable bipartite graphs

Recently, Milanič and Trotignon introduced the class of equistarable graphs as graphs without isolated vertices admitting positive weights on the edges such that a subset of edges is of total weight 1 if and only if it forms a maximal star. Based on equistarable graphs, counterexamples to three conjectures on equistable graphs were constructed, in particular to Orlin’s conjecture, which states ...

متن کامل

Frankl's Conjecture for a subclass of semimodular lattices

 In this paper, we prove Frankl's Conjecture for an upper semimodular lattice $L$ such that $|J(L)setminus A(L)| leq 3$, where $J(L)$ and $A(L)$ are the set of join-irreducible elements and the set of atoms respectively. It is known that the class of planar lattices is contained in the class of dismantlable lattices and the class of dismantlable lattices is contained in the class of lattices ha...

متن کامل

The Auslander-Reiten Conjecture for Group Rings

This paper studies the vanishing of $Ext$ modules over group rings. Let $R$ be a commutative noetherian ring and $ga$ a group. We provide a criterion under which the vanishing of self extensions of a finitely generated $Rga$-module $M$ forces it to be projective. Using this result, it is shown that $Rga$ satisfies the Auslander-Reiten conjecture, whenever $R$ has finite global dimension and $ga...

متن کامل

On the oriented perfect path double cover conjecture

‎An  oriented perfect path double cover (OPPDC) of a‎ ‎graph $G$ is a collection of directed paths in the symmetric‎ ‎orientation $G_s$ of‎ ‎$G$ such that‎ ‎each arc‎ ‎of $G_s$ lies in exactly one of the paths and each‎ ‎vertex of $G$ appears just once as a beginning and just once as an‎ ‎end of a path‎. ‎Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete‎ ‎Math‎. ‎276 (2004) 287-294) conjectured that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016